
Lecture Notes: Di!usion Generative Models

1 Generative Model

What is generative model? Consider a generative model that produces re-
alistic image of human face. Suppose the model always outputs the same
specific image of Albert, then we may not want such generative model.

A good generative model should generate realistic output (of course),
however, at the same time, it should be able to mimic the diversity of input.
Your human face generator should be able to output of various types of faces
(race, age, sex, etc). In other words, generative model is not only learning
realistic samples, it is learning the distribution of the dataset.

On the other hand, sampling (or generating sample) is not always trivial
even when we know the distribution. Suppose you have the following density:

f(x) =
1

ω

ε

x2 + ε2
(1)

for some ε > 0. This is called Cauchy distribution with parameter ε > 0.

Exercise 1. Prove that f(x) is a valid probability density.

In this case, it is non-trivial to generate samples X → f(x) even when we
have a complete characterization of distribution. However, in the scalar case,
we can use inverse transform sampling based on the uniform distribution.

Suppose FX be a cumulative density function of random variable X, and
U → Unif [0, 1] be an uniform distribution. Since FX is non-decreasing and
Pr(U ↑ u) = u for 0 ↑ u ↑ 1, we have:

Pr(F→1

X (U) ↑ x) = Pr(U ↑ FX(x)) = FX(x),

which implies:

F→1

X (U) → f(x).

1

by
definition

cdf is
integral of pdf

In other words, if we sample uniform random variable U , then apply F→1

X ,
then we can achieve a sample that has a distribution f(x).

Then how do we generate a uniform random variable? One way is to
approximate it using binary expansion:

U ↓ 0.U1U2U3 · · ·Un(2), where Ui → Bernoulli

(
1

2

)

By generating a sequence of fair coin flips, we can construct a random num-
ber that closely follows the uniform distribution on [0, 1].

However, for multidimensional random vector X = (X1, . . . , Xn), it is
hard to sample from distribution even when we have an exact formula of
probability density.

In most generative models, which “learns distribution of dataset”, does
not explicitly learn the probability density function. It often learns a “trans-
formation” from samples (that are easy to generate) to a target distribution
(e.g., Generative Adversarial Networks).

Notation: Uppercase X usually denotes a random variable, and lower-
case x often denotes a realization of it. For example, a probability density
function fX(x) takes lowercase x as an input, since it provides a density
value at specific point x.

2 1D Di!usion Model

2.1 Variance Exploding

For simplicity let start from 1-dimensional case. Let X ↔ R be a random
variable that we want to learn. The density function fX(x) is unknown but
we have samples (or we can sample X). Consider the following random
process (called forward process)

X(n) = X(n→1) + Z(n) (2)

where X(0) = X and Z(n) → N (0,ϑ2) is independent Gaussian noise with
mean zero and variable ϑ2. It is equivalent to where we are gradually adding
noise to the input image.

Remark 1. Note that the forward process does not have to be computed
sequentially. We can corrupt a sample X(0) with n-times in a single step

X(n) = X(0) +
↗
nZ (3)

where Z → N (0,ϑ2). This fact is useful in training the denoiser fω.

2

cdf non invertible

21 ,X**
'

Figure 1: The directed graphical model considered in DDPM [5].

When n grows, the nZ term dominates and X(n) behaves like Gaussian.
Yes, this is informal, but we will see the formal proof for variance preserving
(VP) process. The above process is called variance exploding (VE) process
as variance of X(n) explodes.

For large enough N , we can approximate the distribution of X(N) by

X(N) → N (µ̃, ϑ̃). (4)

Clearly, µ̃ = µ0 and ϑ̃2 = ϑ2

0
+Nϑ2 where µ0 and ϑ2

0
are mean and variance

of X0.

Remark 2. Estimating µ̃ and ϑ̃ is much easier than estimating the dis-
tribution. Moreover, we will have explicit formula for µ̃ and ϑ̃ for the VP
process.

The key here is that, we can sample from the distribution N (µ̃, ϑ̃), Let
X̃(N) be the sample from the distribution N (µ̃, ϑ̃). Our goal is to reverse the

process from X(N) to obtain X̃(N→1), . . . , X̃(1), X̃(0) and hoping X̃(0)
(d)
↓ X

(similar in distribution).
Now, consider the reverse sampling (also referred to as the reverse pro-

cess). For each step 1 ↑ n ↑ N , we aim to model the reverse conditional
distribution PX(n→1)|X(n) . (From this point forward, we denote the density
function of X by PX rather than fX .)

For notational simplicity, let X = X̃(n→1), Z = Z̃(n), and Y = X̃(n),
so that Y = X + Z and Y |X → N (0,ϑ2). Our goal is to characterize the
distribution of X|Y . By Bayes’ theorem, we have:

PX|Y (x|y) =
PY |X(y|x)PX(x)

PY (y)
.

To evaluate this expression, we begin by approximating PX(x) and PY (y):

PX(x) = PX(y) + P ↑
X(y)(x↘ y) +O(≃x↘ y≃2)

↓ PX(y) + P ↑
X(y)(x↘ y),

3

large n

taylor expansion

YX dis centeres at y
Il I

xjxx
-1)
- N(X(-1) ,5%)

①train Mn(Xi))

x(
-x(X" N(Un(X*) ,02)

WINN

G also can se EIX") /X()]

where the approximation relies on the assumption that ϑ2 ⇐ 1.
Next, we approximate the marginal density PY (y) as follows:

PY (y) =

∫
PY |X(y|x)PX(x) dx

↓
∫

1↗
2ωϑ2

exp

(
↘(x↘ y)2

2ϑ2

)(
PX(y) + P ↑

X(y)(x↘ y)
)
dx

= PX(y) + P ↑
X(y)EX↓N (y,ε2)[X ↘ y]

= PX(y),

Substituting these approximations into Bayes’ rule yields:

PX|Y (x|y) =
PY |X(y|x)PX(x)

PY (y)

↓
PY |X(y|x) (PX(y) + P ↑

X(y)(x↘ y))

PX(y)

= PY |X(y|x)
(
1 +

P ↑
X(y)

PX(y)
(x↘ y)

)

↓ 1↗
2ωϑ2

exp

(
↘(x↘ y)2

2ϑ2

)
exp

(
P ↑
X(y)

PX(y)
(x↘ y)

)

↓ 1↗
2ωϑ2

exp

(
↘ 1

2ϑ2

(
(x↘ y)2 ↘ 2ϑ2

P ↑
X(y)

PX(y)
(x↘ y) +

(
ϑ2

P ↑
X(y)

PX(y)

)2
))

=
1↗
2ωϑ2

exp

(
↘ 1

2ϑ2

(
x↘ y ↘ ϑ2

P ↑
X(y)

PX(y)

)2
)
.

Noting that
P ↑
X(y)

PX(y) =
ϑ
ϑy logPX(y), we conclude that

X|Y approx.→ N
(
Y + ϑ2

ϖ

ϖy
logPX(Y), ϑ2

)
.

This implies that when the noise variance ϑ2 is small, the reverse condi-
tional distribution can be well-approximated by a Gaussian. Based on this,
we can generate samples from the reverse process via:

x̃(n→1) = x̃(n) + ϑ2
ϖ

ϖx̃(n)
logPX̃(n)(x̃(n)) + z̃(n),

where z̃(n) → N (0,ϑ2) is an independent Gaussian noise.

4

gussion

above
Px(X)

from

not depar on X
"

--

approx excel

--

↓

newlyaddeis

Remark 3. One might wonder whether we can generate samples by sub-
tracting noise instead of adding it. That is, consider the process:

X̃(n→1) = X̃(n) ↘ Z̃(n). (5)

However, this approach does not constitute a denoising process. Since the

noise distribution is symmetric, i.e., ↘Z̃(n) (d)
= Z̃(n), subtracting noise is

distributionally equivalent to adding it. In other words, the process still
corresponds to further corrupting the sample with noise, not reversing it.

Remark 4. It is di!erent from optimal denoising. For example, let X be a
random variable and Y = X +N where N be independent noise. Then, the
minimum mean squared estimation that minimizes

E
[
(X̂(Y)↘X)2

]
(6)

is achieved by X̂(Y) = E [X|Y], i.e., deterministic. In the above example,
the reverse process is di!erent from the optimal denoising step. The key here
is “distribution matching” which is seemingly similar to denoising when ϑ
is small.

Exercise 2. Show that the minimum mean square estimate is X̂(Y) =
E [X|Y]. You can start from

E
[
(X̂(Y)↘X)2

]
= E

[
((X̂(Y)↘ E [X|Y]) + (E [X|Y]↘X))2

]
(7)

Consider the single sample x(0) = x and its corrupted version x(N). If we
sample from X(N) = x(N) and generate X(0) through optimum denoising,
we may not (and will not) get sample that is similar to original x. This is
also an indication of the reverse di!usion is not an optimum denoising (in
mean squared error sense).

Example 1. Let X → N (0,ϑ2
x) and Y = X+Z where Z → N (0,ϑ2

z). Then,
the optimal denoiser is

X̂(Y) =E [X|Y] (8)

=
ϑ2
x

ϑ2
x + ϑ2

z
Y. (9)

Since Y → N (0,ϑ2
x + ϑ2

z), we have

E [X|Y] → N
(
0,

ϑ4
x

ϑ2
x + ϑ2

z

)
(10)

5

An

which does not match to the original distribution of X. However, if we
generate

X̃ = E [X|Y] + Z̃ (11)

where Z̃ → N (0, ε2
xε

2
z

ε2
x+ε2

z
), then the distribution of X̃ → N (0,ϑ2) matches to

the original distribution.

Remark 5. As we will see in the simulation results, we do not need any
neural networks to be trained for reverse process if we have full information
of “score function” ϑ

ϑx̃(n) logPX̃(n)(x̃(n)) for all n and all x̃(n). However, it
is (of course) not the case in practice, and that is why we need to train a
neural network to learn this score function.

Suppose we do not have access to the probability density function or the
score function defined as

s(x(n);n) =
ϖ

ϖx(n)
logPX̃(n)(x(n)),

where the score function explicitly depends on n due to the time-dependent
marginal distribution PX̃(n) .

In such a case, we can instead train a neural network fω(x(n);n) to
approximate the original (clean) data point x(0) from its noisy counterpart
x(n), obtained after n steps of noising. By minimizing the expected squared
error between the network output and the original data,

≃fω(x(n);n)↘ x(0)≃2,

the trained network learns to estimate the conditional expectation:

fω(x
(n);n) ↓ E[X(0)|X(n) = x(n)].

Notably, this learning process does not require knowledge of the underlying
data distribution or the score function.

Exercise 3 (Tweedie’s Formula [4]). Let X be a random variable and
Z → N (0,ϑ2) be an independent Gaussian noise. Let Y = X + Z be
noise corrupted version of X, show that

E[X|Y = y] = y + ϑ2
ϖ

ϖy
logPY (y). (12)

You can start from

PY (y) =

∫
PX(x)PZ(y ↘ x) dz (13)

and compare it with ϑ
ϑyPY (y)

6

NW

↳ diff
is hel

is anot

use Pxst

Using Tweedie’s formula, we have

fω(x;n) ↓ x+ nϑ2
ϖ

ϖx
logPX(n)(x). (14)

Thus, we can obtain an approximation for the score function as

sω(x;n) =
fω(x;n)↘ x

nϑ2
. (15)

2.2 Variance Preserving

The above noise addition process will have gigantic variance of XN , and this
is why it is called variance exploding (VE) process. Clearly, adding noise at
each time will keep increasing the variance. We can have alternative formula
that preserves the variance by scaling. Let

X(n) → N
(√

1↘ ϱnX
(n→1),ϱn

)
(16)

or

X(n) =
√
1↘ ϱnX

(n→1) +
√

ϱnZ
(n) (17)

where 0 < ϱn < 1 for 1 ↑ n ↑ N and Z(n) → N (0, 1) is an independent
Gaussian noise.

Exercise 4. Show that the variance is preserved in the above relation. What
will be the variance of X(N) when N ⇒ ⇑?

Exercise 5. For fixed ϱn ⇓ ϱ, show that X(N) converges to Gaussian dis-
tribution as N ⇒ ⇑.

Proof. Consider the moment generating function

MX(n)(t) =E
[
exp(tX(n))

]
(18)

=E
[
exp(t

↗
1↘ ϱnX(n→1))

]
E
[
exp(t

√
ϱnZ

(n))
]

(19)

=E
[
exp(t

↗
1↘ ϱnX(n→1))

]
exp

(
ϑ2ϱn
2

t2
)

(20)

= · · · (21)

=E
[
exp(t

↗
ς̄nX(0))

]
exp

(
(1↘ ς̄n)ϑ2

2
t2
)

(22)

where ς̄n =
∏n

i=1
(1↘ ϱi). For fixed ϱi ⇓ ϱ, it is clear that ς̄n ⇒ 0 and the

moment generating function converges to that of standard Gaussian. Also,
even when ϱn is nonuniform, as long as ς̄n ⇒ 0, the random variable X(N)

converges to standard Gaussian in distribution.

7

socene,n) directlycompress
-

-

G
--

do same gassian

↳> = exp(F()

Microf
-

UnN
,

loo to
It-Bit

Figure 2: The directed graphical model considered in DDPM [5].

Remark 6. Note that the forward process does not have to be computed
sequentially. We can corrupt a sample X(0) with n-times in a single step

X(n) =
↗
ς̄nX

(0) +
↗
1↘ ς̄nZ (23)

where Z → N (0, 1). Again, this is useful in training fω.

This is called Denoising Di!usion Probabilistic Models (DDPM) [5] (note
that it has > 20000 citations). In the original paper, the authors claimed
that the true reverse distribution can be approximated (for small ϱn)

X(n→1)|X(n) → N (µ(X(n), n),ϱn) (24)

where

µ(X(n), n) =
1↗

1↘ ϱn

(
X(n) + ϱn

ϖ

ϖx
logPX(n)(X(n))

)
. (25)

Note that the µ(X(n), n) is from the Tweedie’s formula, and we can similarly
show that the variance of X(n→1)|X(n) is also ϱn with a negligible high order
term. Similarly, since we do not know the true score function, it estimates

µω(X
(n), n) =

1↗
1↘ ϱn

(
X(n) + ϱnsω(X

(n), n)
)
. (26)

The above model is called Denoising Di!usion Probabilistic Models (DDPM) [5].
DDPM is discretized version of variance preserving di!usion model (we will
see the continuous version of it soon). Recall that the forward and reverse
processes are

X(n)|X(n→1) → N (
√
1↘ ϱnX

(n→1),ϱn) (27)

X(n→1)|X(n) ↓ N (µ(X(n), n),ϱn) (28)

where

µ(X(n), n) =
1↗

1↘ ϱn
(Xn + ϱn

ϖ

ϖX(n)
logPX(n)(X(n))). (29)

8

-

-

The DDPM learns

µω(X
(n), n) =

1↗
1↘ ϱn

(Xn + ϱnsω(X
(n), n)). (30)

The DDPM loss can also be achieved via variational lower bound. Let
X(i:j) = (X(i), . . . , X(j)), and q be the distribution of the forward process
while pω be the distribution of the learned reverse process. Then, the forward
distribution is

X(0) →q(X(0)) (31)

q(X(1:N)|X(0)) =
N

n=1

q(X(n)|X(n→1)) (32)

where the reverse distribution is

X(N) → p(X(N)) = N (0, 1) (33)

pω(X
(0:N)) = p(X(N))

N

n=1

pω(X
(n→1)|X(n)) (34)

pω(X
(0)) =

∫
pω(X

(0:N)) dX(1:N). (35)

The goal of generative model is minimizing negative log-likelihood↘ log pω(X(0)).
(Why? See Exercise 6.)

↘ log pω(X
(0)) =↘ log

∫
pω(X

(0:N)) dX(1:N) (36)

=↘ log

∫
pω(X(0:N))

q(X(1:N)|X(0))
q(X(1:N)|X(0)) dX(1:N)


(37)

=↘ logEq


pω(X(0:N))

q(X(1:N)|X(0))

X
(0)


(38)

↑Eq


↘ log

pω(X(0:N))

q(X(1:N)|X(0))

X
(0)


. (39)

The final inequality follows from Jensen’s inequality. The idea is that instead
of minimizing neagtive log-likelihood directly, we minimize the variational
lower bound (which is indeed an upperbound in this case):

Exercise 6 (Maximum Likelihood). Let pω be Berounoulli distribution with
unknown parameter φ. Suppose we have samples C1, . . . , Cn → pω. What is
the maximum likelihood estimate of φ?

9⑫

Then, the sample mean of likelihood is an approximation of Eq[↘ log pω(X(0))],
which is upperbounded by

Eq

[
↘ log pω(X

(0))
]

(40)

↑Eq


↘ log

pω(X(0:N))

q(X(1:N)|X(0))


(41)

=Eq


↘ log p(X(N))↘

N

n=1

log
pω(X(n→1)|X(n))

q(X(n)|X(n→1))


(42)

=Eq


↘ log p(X(N))↘

N

n=2

log
pω(X(n→1)|X(n))

q(X(n)|X(n→1))
↘ log

pω(X(0)|X(1))

q(X(1)|X(0))


(43)

Note that the expectation is with respect to X(0:T) → q. From Markov prop-
erty, we have q(X(n)|X(n→1))q(X(n→1)|X(0)) = q(X(n→1)|X(n), X(0))q(X(n)|X(0)).

Exercise 7. Show that q(X(n)|X(n→1))q(X(n→1)|X(0)) = q(X(n→1)|X(n), X(0))q(X(n)|X(0)).

Thus,

Eq

[
↘ log pω(X

(0))
]

(44)

=Eq


↘ log p(X(N))↘

N

n=2

log
pω(X(n→1)|X(n))

q(X(n→1)|X(n), X(0))

q(X(n→1)|X(0))

q(X(n)|X(0))
↘ log

pω(X(0)|X(1))

q(X(1)|X(0))



(45)

=Eq


↘ log

p(X(N))

q(X(N)|X(0))
↘

N

n=2

log
pω(X(n→1)|X(n))

q(X(n→1)|X(n), X(0))
↘ log pω(X

(0)|X(1))



(46)

The first term of (46) becomes

LN
!
= Eq


↘ log

pω(X(N))

q(X(N)|X(0))


= EX(0)↓q

[
DKL(q(X

(N)|X(0))≃p(X(N)))
]
.

(47)

where the expectation is with respect to X(0).
The second term of (46) becomes

Eq


↘

N

n=2

log
pω(X(n→1)|X(n))

q(X(n→1)|X(n), X(0))


(48)

10

I
V

↓ tower property

ecXonly o ↓ marke property

stuzar savision V=I term

-

a bayes whe multiple times to prove

wa
want
e

will cana

some terms
still
win

thin- ↓

- Cancel al

=
N

n=2

Eq

[
DKL(q(X

(n→1)|X(n), X(0))≃pω(X(n→1)|X(n))
]

(49)

=
N

n=2

Eq

[
DKL(q(X

(n→1)|X(n), X(0))≃pω(X(n→1)|X(n))
]

(50)

!
=

N

n=2

Ln→1 (51)

where the expectation is on conditional X(n) and X(0) for each expectation.
Finally, the last term of (46) is

L0 = Eq

[
↘ log pω(X

(0)|X(1))
]
. (52)

Since LN is independent of φ and L0 is negligible (compared to L1, . . . , LN→1),
we often consider the second term only:

L =
N

n=2

Ln→1 (53)

Exercise 8. Show that

q(X(n→1)|X(n), X(0)) = N (µn(X
(n)|X(0)),ϱn) (54)

where

µn(X
(n)|X(0)) =

1↗
1↘ ϱn

(
X(n) + ϱn

ϖ

ϖX(n)

log q(X(n)|X(0))

)
(55)

Hint: Given X(0), all distributions are Gaussian, and you may start with

q(X(n→1)|X(n), X(0)) =
q(X(n)|X(n→1), X(0))q(X(n→1)|X(0))

q(X(n)|X(0))
. (56)

Also note that we have an analytic formula for

ϖ

ϖX(n)
log q(X(n)|X(0)) (57)

The following exercise provides an explicit formula for KL divergence
between Gaussian distributions

11

q(x
*)

jewirt

-- goal
of training

match these
- dists.

Di(NJUn(X
/X,Bn)

min -

An

Exercise 9. Show that

DKL

(
N (µ0,ϑ

2

0I)≃N (µ1,ϑ
2

1I)
)
=

1

2ϑ2

1

≃µ1 ↘ µ0≃2 +
d

2

(
ϑ2

0

ϑ2

1

↘ 1

)
+ d log

ϑ1
ϑ0

.

(58)

where d is dimension of multidimensional Gaussian distribution and µ0, µ1 ↔
Rd,ϑ1,ϑ2 > 0.

Thus, we have

Ln→1 =
1

2ϱn
≃µn(X

(n)|X(0))↘ µω(X
(n), n)≃2 (59)

=
ϱn

2(1↘ ϱn)


ϖ

ϖX(n)
log qn|0(X

(n)|X(0))↘ sω(X
(n), n)


2

(60)

=
ϱn

2(1↘ ϱn)


X(n) ↘

↗
ς̄nX(0)

1↘ ς̄n
↘ ↼ω(X(n), n)↗

1↘ ς̄n



2

(61)

=
ϱn

2(1↘ ϱn)(1↘ ς̄n)

↼n ↘ ↼ω(
↗
ς̄nX

(0) +
↗
1↘ ς̄n↼n, n)


2

(62)

where X(n) (d)
=

↗
ς̄nX(0) +

↗
1↘ ς̄n↼n with ↼n → N (0, 1).

Thus, the training procedure is simply iteratively appying

1. Pick X(0) from data

2. Sample n → Unif({1, . . . , N})

3. Sample ↼ → N (0, 1)

4. Compute X(n) =
↗
ς̄nX(0) +

↗
1↘ ς̄n↼.

5. Call optimizer to minimize (apply SGD) ↽̃n≃↼↘ ↼ω(X(n), n)≃2

Note that for small ϱn’s and large N (so that ς̄N is small), the terminal
variable X(N) is approximately N (0, 1). Thus, with learned ↼ω(X(n), n), the
sampling process of DDPM is

1. Sample X(N) → N (0, 1)

2. For n = N,N ↘ 1, . . . , 1

(a) Sample Z(n) → N (0, 1)

(b) Compute X(n→1) = 1↔
1→ϖn

(
X(n) ↘ ϖn↔

1→ϱ̄n
↼ω(X(n), n)

)
+
↗
ϱnZ(n)

12

Hu

pluy(ycX

W

xn)

Remark 7. There are couple of sources of error: 1) reverse process is only
approximately Gaussian, 2) learned score function is not exact, and 3) the
terminal distribution is not exactly Gaussian.

2.3 Stochastic Di!erential Equation

Both variance exploding (VE) and variance preserving (VP) can be ex-
pressed via stochastic di!erential equation (SDE). Consider the variance
exploding (VE) case first where the variance of noise ϑ2 ⇒ 0 is nearly zero.
In this limit, we use Xt, Xt→!t,ϑ2Zt instead of X(n+1), X(n), Z(n), then

Xt = Xt→!t + ϱZ(n) (63)

where Z(n) → N (0,”t), and we replace it bystandard Brownian motion dZt.
Brownian motion is cumulative Gaussian noise of infinitesimal variances
where Zt ↘ Zt→!t → N (0,”t). This is equivalently

dXt =
√
ϱdZt. (64)

Similarly, the variance preserving (VP) case

Xt =
√
1↘ ϱnXt→!t +

√
ϱnZn (65)

↓
(
1↘ ϱtdt

2

)
Xt→!t +

√
ϱtdZt (66)

where ϱn = ϱtdt. Note that Zn → N (0, 1) and the Brownian motion
(roughly speaking) satisfies dZt → N (0, dt). Equivalently, we have

dXt = ↘ϱt
2
Xtdt+

√
ϱtdZt. (67)

More generally, we have the following SDE formula

dXt = f(Xt, t)dt+ g(t)dZt (68)

whose discretized version is

Xk+1 = Xk +”tf(Xk, k”t) + g(k”t)
↗
”tZk. (69)

We can solve SDE via

Xt = X0 +

∫ t

0

f(Xs, s) ds+

∫ t

0

g(s) dWs (70)

13

SBI-iP

BuBrdt

where

∫ t

0

g(s) dWs = lim
ς↗0

↘t/ς≃

k=0

g(↼k)
↗
↼Zk (71)

is called Itô stochastic integral.
However, unlike regular ODE where we can analytically express the path

Xt, SDE produces a random process. Thus, the solution of SDE should be
a probability distribution, more precisely, a joint distribution of {Xt}Tt=0

.
For di!usion probabilistic models, we will consider a weaker notion: the
marginal probability distributions {pt}Tt=0

such that Xt → pt for 0 ↑ t ↑ T .
We are interested in the evolution of pt from t = 0 to t = T .

This evolution can be expressed via Fokker-Plank equation.

ϖtpt = ↘ϖx(fpt) +
g2

2
ϖ2

x(pt) (72)

which implies

ϖtpt(x) = ↘ϖx(f(x, t)pt(x)) +
g2(t)

2
ϖ2

x(pt(x)). (73)

Rough derivation is following. For any ⇀ (smoothe and compact),

ϖtEXt↓pt [⇀(X)] ↓1

↼

(
EX↓pt+ω [⇀(X)]↘ EX↓pt [⇀(X)]

)
(74)

↓1

↼

(
EX↓pt [⇀(X + ↼f +

↗
↼gZ]↘ EX↓pt [⇀(X)]

)
(75)

↓1

↼

(
EX↓pt [↼⇀

↑(X)f(X, t) +
↗
↼⇀↑(X)g(t)Z

+
1

2
⇀↑↑(X)g2(t)↼Z2 +O(↼3/2)]

)
(76)

↓EX↓pt [⇀
↑(X)f(X, t) +

1

2
⇀↑↑(X)g2(t)] (77)

where Z → N (0, 1).
From integration by part,

ϖt

∫
⇀(x)pt(x) dx =

∫
⇀↑(x)f(x, t)pt(x) dx+

1

2

∫
⇀↑↑(x)g2(t)pt(x) dx

(78)

⇔
∫

⇀(x)ϖtpt(x) dx =

∫
⇀(x)(↘ϖx(fpt)) dx+

1

2

∫
⇀(x)g2(t)ϖ2

x(pt) dx

(79)

14

where the boundary condition is p(±⇑) = 0 and ↖p(±⇑) = 0. Finally, we
have

ϖtpt = ↘ϖx(fpt) +
g2

2
ϖ2

x(pt). (80)

Now, we will show the forward SDE and reverse SDE has the same
marginal distribution evolution.

Theorem 1 (Anderson’s reverse SDE time theorem [1]). Given the forward
SDE

dXt = f(Xt, t)dt+ g(t)dZt (81)

where X0 → p0, the corresponding reverse-time SDE is

dX̄t = (f(X̄t, t)↘ g2(t)↖x log pt(X̄t))dt+ g(t)dZ̄t. (82)

with X̄T → pT where dZ̄t is the reverse time Brownian motion and pT is a
distribution of XT from forward SDE.

Alternatively, define {Yt}Tt=0
where Yt = X̄T→tvia

dYt = ↘(f(Yt, T ↘ t)↘ g2(T ↘ t)↖xpT→t(Yt))dt+ g(T ↘ t)dZt (83)

with Y0 → pT . Then,

Xt
D
= X̄t = YT→t. (84)

Note that dZt
D
= ↘dZt.

Remark 8. The above theorem holds for general multidimensional cases.
For single dimensional distributions, we have

dX̄t = (f(X̄t, t)↘ g2(t)ϖx log pt(X̄t))dt+ g(t)dZ̄t. (85)

The proof is simple application of FP equation.

Proof. Let {qt}Tt=0
be marginal densities of {Yt}Tt=0

. Then, {qt}Tt=0
satisfies

the FP equation

ϖtqt(y) = ϖy
(
(f(y, T ↘ t)↘ g2(T ↘ t)ϖy log pT→t(y))qt(y)

)
+

g2(T ↘ t)

2
ϖ2

y(qt(y))

(86)

15

Let {p̄t}Tt=0
be marginal densities of {X̄t}Tt=0

. Since p̄T→t = qt, then {p̄t}Tt=0

satisfies the FP equation

ϖtp̄t(x) = ↘ϖx
(
(f(x, t)↘ g2(t)ϖx log pt(x))p̄t(x)

)
↘ g2(t)

2
ϖ2

x(p̄t(x)). (87)

The final step of the proof is proving that pt solves the above reverse FP
equation.

↘ ϖx
(
(f(x, t)↘ g2(t)ϖx log pt(x))pt(x)

)
↘ g2(t)

2
ϖ2

x(pt(x)) (88)

=↘ ϖx(fpt) + g2(t)ϖx(ϖx log pt(x)pt(x))↘
g2(t)

2
ϖ2

x(pt(x)) (89)

=↘ ϖx(fpt) + g2(t)ϖx(ϖxpt(x))↘
g2(t)

2
ϖ2

x(pt(x)) (90)

=↘ ϖx(fpt) +
g2(t)

2
ϖ2

x(pt(x)) (91)

=ϖxpt (92)

where the last equation is from forward FP equation. Finally, pt also satisfies
(87), and therefore pt = p̄t.

2.4 Score Matching

We can generate sample using reverse SDE, starting from Gaussian sample
XT . However, we need ϖx log pt(x). At first glance, it sounds weird since
the whole point of generative model is from hardness of learning distribution
pX(x) directly. However, learning the score is (surprisingly) more tractable.
More precisely, we learn the score function via neural network sω(x, t). The
natural loss function would be

L(φ) =
∫ T

0

↽(t)EXt

[
≃sω(Xt, t)↘ ϖXt log pt(Xt)≃2

]
dt (93)

where ↽(t) > 0 is a weighing factor. This is because we want to learn score
function for all 0 ↑ t ↑ T . However, we do not have an access to pt, and we
need alternative formula.

Theorem 2 (Score Matching [12]). We have equivalent formula

L(φ) =
∫ T

0

↽(t)EX0

[
EXt|X0

[
≃sω(Xt, t)↘ ϖXt log pt|0(Xt|X0)≃2

]]
dt+ C

(94)

for some constant C which are independent of φ.

16

~known

We do not know pt, but we do know pt|0(Xt|X0) since it is noise corrup-
tion process (adding Gaussian noise). Thus, an alternative formula (94) is
tractable.

Proof.

ϖXt log pt(Xt) =
ϖXtpt(Xt)

pt(Xt)
(95)

=

(
ϖXt

∫
pt|0(Xt|X0)p0(X0) dX0

)
· 1

pt(Xt)
(96)

=

(∫
ϖXtpt|0(Xt|X0)p0(X0) dX0

)
· 1

pt(Xt)
(97)

=

(∫ (
ϖXt log pt|0(Xt|X0)

)
p0(X0)pt|0(Xt|X0) dX0

)
· 1

pt(Xt)
(98)

=

∫ (
ϖXt log pt|0(Xt|X0)

) p0(X0)pt|0(Xt|X0)

pt(Xt)
dX0 (99)

=

∫ (
ϖXt log pt|0(Xt|X0)

)
p0|t(X0|Xt) dX0 (100)

=EX0|Xt

[
ϖXt log pt|0(Xt|X0)

 Xt
]
. (101)

Then, the loss function would be

L(φ) =
∫ T

0

↽(t)EXt

[
≃sω(Xt, t)↘ ϖXt log pt(Xt)≃2

]
dt (102)

=

∫ T

0

↽(t)EXt

[
≃sω(Xt, t)≃2 ↘ 2↙sω(Xt, t), ϖXt log pt(Xt)∝

]
dt+ C

(103)

=

∫ T

0

↽(t)EXt

[
≃sω(Xt, t)≃2

↘2↙sω(Xt, t),EX0|Xt

[
ϖXt log pt|0(Xt|X0)

 Xt
]
∝
]
dt+ C (104)

=

∫ T

0

↽(t)EXt

[
EX0|Xt

[
≃sω(Xt, t)≃2 ↘ 2↙sω(Xt, t), ϖXt log pt|0(Xt|X0)∝

 Xt
]]

dt+ C

(105)

=

∫ T

0

↽(t)EXt

[
EX0|Xt

[
≃sω(Xt, t)↘ ϖXt log pt|0(Xt|X0)≃2

 Xt
]]

dt+ C ↑

(106)

17

take deir (OP+=
(Glogpt) . P+

H

score
fr -- I

↓ bayes rule

=

∫ T

0

↽(t)EX0

[
EXt|X0

[
≃sω(Xt, t)↘ ϖXt log pt|0(Xt|X0)≃2

]]
dt+ C ↑

(107)

In (regular) score matching, the conditional score function ϖXt log pt|0(Xt|X0)
is implementable for reasonable f and g. For example, the Orstein-Uhlenbeck
process

dXt = ↘ϱXtdt+ ϑdWt (108)

is one such example where

pt|0(Xt|X0) → N
(
e→ϖtX0,

ϑ2

2ϱ
(1↘ e→2ϖt)

)
. (109)

In both cases, we have

Xt
(d)
= εtX0 ↘ ϑt↼ (110)

for some εt,ϑt and ↼ → N (0, I). Then, the score function is given by

↖ log pt|0(Xt|X0) =
εtX0 ↘Xt

ϑ2
t

(111)

(d)
=

↼

ϑt
. (112)

With reparameterization trick, we can define

sω(Xt, t) =
↼ω(Xt, t)

ϑt
. (113)

Finally, the loss function (of regular score matching) becomes

L̃(φ) =
∫ T

0

↽(t)EX0

[
EXt|X0

[
≃sω(Xt, t)↘ ϖXt log pt|0(Xt|X0)≃2

 X0

]]
dt.

(114)

=

∫ T

0

↽(t)

ϑ2
t

EX0

[
Eς

[
≃↼ω(εtX0 ↘ ϑt↼, t)↘ ↼≃2

 X0

]]
dt. (115)

=T · E
X0,ς,t↓Unif(0, T)


↽(t)

ϑ2
t

≃↼ω(εtX0 ↘ ϑt↼, t)↘ ↼≃2

. (116)

18

unknown
Pt is

is
known asnt

PHO

canexporand

① pick + ~Unif [0 ,T] ifa small
, or to

② X+= UXo-E so only train [CXHH) up tof

③ I 130-E Xj=TX+ , a)

Ex(X++) for28 inaccurate

① update O to minimize it

E!ectively, the reparameterized network ↼ω(Xt, t) predicts the noise ↼ from

noisy data Xt
(d)
= εtX0 ↘ ϑ↼ where the score function sω predicts the scaled

noise ϑt↼. In practice, it is more common to implement ↼ω instead of sω
(although they are equivalent up to constant scale factor).

Remark 9. Note that at t = 0, the SDE has ϑt = 0 and the loss blows up.
In practice, a common choice is to train loss from t = t0 > 0, i.e.,

L̃(φ) =E
X0, ς, t↓Unif(t0, T)


↽(t)

ϑ2
t

≃↼ω(εtX0 ↘ ϑt↼, t)↘ ↼≃2

. (117)

We can compute the loss function for DDPM [5] again. Recall the repa-
rameterization trick

ς̄n =
n

i=1

(1↘ ϱn) (118)

X(n) (d)
=

↗
ς̄nX0 ↘

↗
1↘ ς̄n↼n (119)

↼n → N (0, 1) (120)

↼ω =
↗
1↘ ς̄nsω (121)

↽̃n =
↽nϱ2

n

1↘ ς̄n
(122)

Recall that the loss function from VLB is

L(φ) =
N

n=1

↽̃nEX(0),ς↓N (0,1)

↼↘ ↼ω(
↗
ς̄nX

(0) ↘
↗
1↘ ς̄n↼, n)


2


(123)

This coincides with the loss derived from score matching.

3 (Multi-dimensional) Di!usion Model

Now, lets do the same for the multi-dimensional case. LetX = (X1, . . . , Xd) ↔
Rd be a random vector that we want to learn. The density function is PX(x).
The variance exploding forward process is

X(n) =




X(n)

1

...

bx(n)d



 =




X(n→1)

1

...

bx(n→1)

d



+




Z(n)
1

...

Z(n)
d



 (124)

19

where X(0) = X and Z(n)
1

, Z(n)
2

, . . . , Z(n)
d → N (0,ϑ2) are independent Gaus-

sian random variables with mean zero and variable ϑ2. As forward process
progresses, the Gaussian noise dominates (again) and the terminal distri-
bution will be approximately i.i.d. Gaussian. Even for multidimensional
Gaussian, estimating mean vector and covariance matrix is relatively easy.

Similar to 1D case, we can approximate the reverse process by

(
X̃(n→1)|X̃(n) = x̃(n)

)
→ N

(
x̃(n) + ϑ2↖ logPX̃(n)(x̃(n)),ϑ2I

)
. (125)

The key step is (again) approximation of PX(n→1)(x) by

PX̃(n→1)(x̃) =PX̃(n→1)(x̃(n)) + ↙↖PX̃(n→1)(x̃(n)), x̃↘ x̃(n)∝+O(≃x̃↘ x̃(n)≃2).
(126)

The reverse process to obtain X̃(N→1) to X̃(0) and hoping X̃(0)
(d)
↓ X (similar

in distribution).
Recall that the result matches with Anderson’s reverse SDE.

dX̄t = (f(X̄t, t)↘ g2(t)↖x log pt(X̄t))dt+ g(t)dZ̄t. (127)

Note that the Tweedie’s formula also holds for multi-dimensional case.

Lemma 1 (Tweedie’s formula, multidimension case). Let X be a random
vector and Z be i.i.d. Gaussian with zero mean and variance ϑ2. For Y =
X+ Z, we have

E [X|Y] = Y + ϑ2↖y logPY(y). (128)

Thus, if di!usion model is trained to learn “denoising,” it essentially
learns

fω(x
(n), n) ↓E

[
X(0)|X(n) = x(n)

]
(129)

=x(n) + nϑ2↖x(n) logPX(n)(x(n)). (130)

Thus, we can approximate score function by

sω(x
(n), n) =

fω(x(n), n)↘ x(n)

nϑ2
. (131)

20

in /Xi ~N(X),T

*

same formulation as

gradient case but gradients
instead of derivitive

11x" -Nowill ↓

-

So(X,n)

can train model to estimate

for or Sp

3.1 (Multidimensional) DDPM [5]

DDPM formula would be the same except the noise is now i.i.d. Gaussian
with covariance ϑ2I. The forward and reverse processes are

X(n)|X(n→1) → N (
√
1↘ ϱnX

(n→1),ϱnI) (132)

X(n→1)|X(n) ↓ N (µ(X(n), n),ϱnI) (133)

where

µ(X(n), n) =
1↗

1↘ ϱn
(Xn + ϱn↖X(n) logPX(n)(X(n))). (134)

Remark 10. In multidimensional setup, the distribution of X(N) converges
to not only Gaussian in marginal sense, it converges to the i.i.d. Gaussian
distribution.

Exercise 10. Show that X(N) converges to N (0, I) as N ⇒ ⇑.

The DDPM learns

µω(X
(n), n) =

1↗
1↘ ϱn

(Xn + ϱnsω(X
(n), n)). (135)

We have the same loss function derived from variational lower bound:

L =
N

n=2

Ln→1 (136)

Ln→1 =
ϱn

2(1↘ ϱn)(1↘ ς̄n)

↼n ↘ ↼ω(
↗
ς̄nX

(0) +
↗
1↘ ς̄n↼n, n)


2

(137)

where X(n) (d)
=

↗
ς̄nX(0) +

↗
1↘ ς̄n↼n with ↼n → N (0, I).

Lets recap the training procedure:

1. Pick X(0) from data

2. Sample n → Unif({1, . . . , N})

3. Sample ↼ → N (0, I)

4. Compute X(n) =
↗
ς̄nX(0) +

↗
1↘ ς̄n↼.

5. Call optimizer to minimize (apply SGD) ↽̃n≃↼↘ ↼ω(X(n), n)≃2

With learned ↼ω(X(n), n), the sampling process of DDPM is

21

X
(
~ NCO,1)
⒗

m
M

-
T

Ex (X,n) =JinSo()

1. Sample X(N) → N (0, I)

2. For n = N,N ↘ 1, . . . , 1

(a) Sample Z(n) → N (0, I)

(b) Compute X(n→1) = 1↔
1→ϖn

(
X(n) ↘ ϖn↔

1→ϱ̄n
↼ω(X(n), n)

)
+
↗
ϱnZ(n)

3.2 Stochastic Di!erential Equation (SDE)

For f(Xt, t) ↔ Rd, g(t) ↔ Rd⇐d, we have the following general SDE formula
(covers VP and VE)

dXt = f(Xt, t)dt+ g(t)dZt (138)

whose discretized version is

Xk+1 = Xk +”tf(Xk, k”t) + g(k”t)
↗
”tZk. (139)

Recall that the solution of SDE should be a probability distribution,
where the marginal probability distributions {pt}Tt=0

such that Xt → pt for
0 ↑ t ↑ T . The evolution of {pt} can be expressed via Fokker-Plank equa-
tion.

ϖtpt = ↘↖x ′ (fpt) +
1

2
Tr(g↭Hptg) (140)

where Hpt is the Hessian of pt(x).

Remark 11. If g(t) = ⇁(t)I for ⇁(t) ↔ R, then FP is simply

ϖtpt = ↘↖x ′ (fpt) +
⇁(t)2

2
”pt (141)

where ”pt = ↖ ′↖pt =
d

i=1

ϑ2

ϑ2
xi

is Laplacian.

Recall that the 1-D FP equation was.

ϖtpt = ↘ϖx(fpt) +
g2

2
ϖ2

x(pt) (142)

which implies

ϖtpt(x) = ↘ϖx(f(x, t)pt(x)) +
g2(t)

2
ϖ2

x(pt(x)). (143)

22

i X
↑ thepad

-

diagonal E

-

Figure 3: DDPM [5] vs. DDIM [10]

Anderson’s theroem still holds and we have a reverse process with match-
ing marginal distributions.

dX̄t = (f(X̄t, t)↘ g2(t)↖x log pt(X̄t))dt+ g(t)dZ̄t. (144)

with X̄T → pT where dZ̄t is the reverse time Brownian motion and pT is a
distribution of XT from forward SDE. Alternatively, define {Yt}Tt=0

where
Yt = X̄T→tvia

dYt = ↘(f(Yt, T ↘ t)↘ g2(T ↘ t)↖xpT→t(Yt))dt+ g(T ↘ t)dZt (145)

with Y0 → pT . Then,

Xt
D
= X̄t = YT→t. (146)

3.3 Score Matching

We have the same score matching theorem in multidimensional case

Theorem 3 ((Multidimensional) Score Matching [12]). We have equivalent
formula

L(φ) =
∫ T

0

↽(t)EX0

[
EXt|X0

[
≃sω(Xt, t)↘↖Xt log pt|0(Xt|X0)≃2

]]
dt+ C

(147)

for some constant C which are independent of φ.

The proof is more or less the same. Similar to a single dimensional case,
we can also derive the loss function of DDPM from score matching result.

4 Denoising Di!usion Implicit Model (DDIM) [10]

Note that the DDPM objective only depends on the marginal q(X(n)|X(0)),
and it does not depend on the joint distribution of entire X(0:n). Thus, we

23

? We don't know

XCH) 11 So(X+,+) - +logP(AI)

Il
-

->deterministic
generation

control amount of noise

added in revea process

can modify the generation distribution q while having the same marginal
q(X(n)|X(0)) = N (

↗
ς̄nX(0), (1↘ ς̄n)I).

The DDIM has non-Markovian forward process (what is Markovian?).
Given the sample X(0) = X, the forward process q is

q(X(N)|X(0)) =N (
↗
ς̄NX(0), (1↘ ς̄N)I) (148)

q(X(n)|X(n+1), X(0)) =N (
↗
ς̄nX

(0) +


1↘ ς̄n ↘ ϑ2

n+1

↗
1↘ ς̄n+1

(X(n+1) ↘
↗
ς̄nX

(0)),ϑ2

n+1I)

(149)

for ϑn ∞ 0.

Exercise 11. Show that (149) matches the marginal distribution of DDPM.

If we have ϑn ⇓ 0, then the forward process is deterministic.
DDIM trains the error network ↼ω(X(n), n) that predicts ↼n = Z(n) where

X(n) !
=

↗
ςnX

(0) +
↗
1↘ ς̄nZ

(n). (150)

Since we can estimate X̂(0) by

X̂(0) =
1↗
ς̄n

(X(n) ↘
↗
1↘ ς̄n↼ω(X

(n), n)), (151)

DDIM sampling can be done by

pω(X
(n)|X(n+1)) =q(X(n)|X(n+1), X̂(0)). (152)

In other words,

X(n) =
↗
ς̄n

(
X(n+1) ↘

↗
1↘ ς̄n+1↼ω(X(n+1), n+ 1)

ς̄n+1

)

+

1↘ ς̄n ↘ ϑ2

n+1
↼ω(X

(n+1), n+ 1) + ϑnZ
(n). (153)

Then, the sampling process becomes deterministic if ϑn ⇓ 0. This deter-
ministic generation is called discretization of the ODE (ordinary di!erential
equation) sampling.

Note that training a Denoising Di!usion Implicit Model (DDIM) can
be done in exactly the same manner as a Denoising Di!usion Probabilistic
Model (DDPM), with the di!erence only in the sampling process.

24

generate
XiS , Xa3

first
s

you ...
X

The
genes

"
from

DpPm training

R
-

Groise

sampling
-

& Xi -NCO , i)

② Xnwq(Xn IXn+, Yo
= Yo)

5 Guidance

Consider the case where the di!usion model is trained on dataset with vari-
ous labels (e.g., ImageNET [2], CIFAR10 [7]). Then, we may want to gener-
ate a sample with specific label y, i.e., sample from PX|Y (x|y). Moreover, in
multimodal models such as DALL·E2 that generates an image from prompt,
we may also want to generate a specific image instead of random image from
PX . A common technique to generate a specific image, conditioned on label
or prompt, is guidance.

5.1 Classifier Guidance

Let Y be the class label of X and (X, Y) → PX,Y . One naive approach is
to train score model sω(X|Y = y) = ↖x logPX|Y (x|y) for all y and generate
sample according to PX|Y (x|y). More precisely, we want to run a reverse

process with ↖x(n) logPX(n)|Y (x
(n)|y) instead of ↖x(n) logPX(n)(X(n)). How-

ever, this requires training score networks multiple times (for all y).
From the Bayes’ rule, we have

PX|Y (x|y) =
PX(x)PY |X(y|x)

PY (y)
(154)

↖x logPX|Y (x|y) =↖x logPX(x) +↖x logPY |X(y|x). (155)

Thus,

↖x(n) logPX(n)|Y (x
(n)|y) =↖x(n) logPX(n)(x(n)) +↖x(n) logPY |X(n)(y|x(n)).

(156)

The idea of classifier guidance is re-use the pretrained score model

sω(X
(n), n) = ↖X(n) logPX(n)(X(n)). (157)

The classifier guidance assumes that we can train a time-dependent clas-
sifier which predicts the label Y based on X(n), i.e., it provides

cφ(X
(n), Y, n) ↓ PX(n)(Y |X(n)). (158)

Remark 12. In original SDE paper [11], the authors claimed that the output
of the classifier Y (n) can be approximately equal to true label y for n small.
Intuition is that it is enough to approximate Y (n) ↓ y for small n since the
generating process is roughly

25

classifies Xt

often
hard + OGIN

additional NN ->
to train

Figure 4: inpainting and colorization [11]

• at early stage of generation (large n), it roughly generate the structure
(not specific to label)

• at the end of generation process (for small n), it guide to a sample
corresponds to a specific label y.

Except the fact that cφ takes an additional input n (indicates the noise
level of X(n)) it is a regular classifier. We can train as if it is a regular
classifier. The generation can be done via reverse SDE process (or discretized
version of it)

dX̄(t) = (f ↘ g2(↖X̄(t) log pt(X̄
(t)) +↖X̄(t) log pt(Y |X̄(t)))dt+ gdZ̄(t) (159)

where we replace the conditional distribution by the estimate from classifier

dX̄(t) = (f ↘ g2(↖X̄(t) log pt(X̄
(t)) +↖X̄(t)cφ(X

(t), Y, t)dt+ gdZ̄(t). (160)

In practice, it helps to scale the guidance term by a constant factor
ω > 1 [3].

dX̄(t) = (f ↘ g2(↖X̄(t) log pt(X̄
(t)) + ω↖X̄(t) log pt(Y |X̄(t)))dt+ gdZ̄(t)

(161)

5.2 Inpainting

Let # be a pixel subsampling operation where Y = #(X(0)). For remaining
part, we use #̄. Our goal is to generate the remaining part of image where

26

Y = #(X(0)) is fixed. Let Z(t) = #̄(X(t)), then it follows the same SDE

dZ(t) = f̄(Z(t), t)dt+ ḡ(t)dW̄ (t), (162)

where Z0 = #̄(X(0)), f̄ = #̄(f), ḡ = #̄(g), and W̄ (t) = #̄(W (t)). Note
that the Brownian motion is coordinate-wise independent (we are adding
i.i.d. Gaussian noise to each pixel), W̄ (t) is simply the lower dimensional
Brownian motion. Since we want conditional sampling given Y , we have

pt(Z
(t)|#(X(0)) = Y) (163)

=

∫
pt(Z

(t)|#(X(t)),#(X(0)))pt(#(X
(t))|#(X(0))) d#(X(t)) (164)

= E
”(X(t))↓pt(”(X(t))|”(X(0)))

[
pt(Z

(t)|#(X(t)),#(X(0)))
]

(165)

↓ E
”(X(t))↓pt(”(X(t))|”(X(0)))

[
pt(Z

(t)|#(X(t)))
]

(166)

↓ pt(Z
(t)|#̂(X(t))) (167)

where #̂(X(t)) is noise corrupted sample of #(X(0)). The first approximation
is from the observation that #(X(t)) contains enough information of Z(t)

compared to #(X(0)).
The second approximation is a single sample approximation of the ex-

pected value. Thus, we guide the sampling process using

↖Z(t) log pt(Z
(t)|#(X(0)) = Y) ↓ ↖Z(t) log pt(Z

(t)|#̂(X(t))) (168)

= ↖Z(t) log pt([Z
(t); #̂(X(t))]) (169)

Note [Z(t); #̂(X(t))] forms a full dimensional vector where we can compute
the score function. Thus, for Y = #(X(0)), the (discretized) inpainting can
be done by

1. Sample X(N)

2. For n = N,N ↘ 1, · · · , 1

(a) Sample ↼n → N (0, I)

(b) ζn = ϱnY + εn↼n

(c) Sample ↼↑n → N (0, I)

(d) Sample via

Z̄(n→1) = Z̄(n) ↘”t(↘ϱZ̄(n) ↘ ϑ2#̄(sω([Z̄
(n); ζn], n”t))) + ϑ

↗
”n↼↑n

(170)

27

* P(z+, 2 (XH(o2 (foll
marsinalization

I
appry

= log P+(2+, Y (X+))
-

Sallein(X+) it

5.3 Classifier-free Guidance [6]

Recall that the classifier guidance requires to to train a classifier, where
classifier takes X(t) as an input for various noise level ϑ2

t .
Given the trained score function, classifier guidance is based on

dX̄(t) = (f ↘ g2(↖X̄(t) log pt(X̄
(t)) + ω↖X̄(t) log pt(Y |X̄(t)))dt+ gdZ̄(t)

(171)

which replaced the conditional score function by

↖X̄(t) log pt(X̄
(t)) + ω↖X̄(t) log pt(Y |X̄(t)))dt (172)

which is also equivalent to

↖X̄(t) log pt(X̄
(t)|Y) + (ω ↘ 1)↖X̄(t) log pt(Y |X̄(t)))dt. (173)

Classifier guidance rely on additional classifier, which is another neural
network to train and compute the gradient for guidance. Instead, classifier-
free guidance is an alternative method of modifying conditional score but
without extra classifier. The key idea is to train a single model that learns
unconditional score function↖x(n) logPX(n)(x(n)) and conditional score func-
tion↖x(n) logPX(n)|y(x

(n)|y) for all y. More precisely, the score function that

we want to train is ↼ω(X(n), y) where ↼ω(X(n), y) corresponds to the condi-
tional score function with label y and we allow y = ∈ so that ↼ω(X(n), ∈)
represents the unconditional score function.

Then, the sampling is performed using

ω↼ω(X
(n), y)↘ (ω ↘ 1)↼ω(X

(n), ∈) (174)

for weight parameter ω > 1.

Remark 13. A possible interpretation of classifier-free guidance is that we
guide a sample under label y with weight ω, then pull back the sample with
unconditional score function with weight ω ↘ 1. Overall, the sample moved
towards the label y with e!ective weight of 1.

Note that the classifier guidance does not require to train score function.
However, the training procedure is now modified for classifier-free guidance.
Given the sample (X, Y), we replace Y = ∈ with given probability (to learn
unconditional score function as well). Then, similar to the original DDPM
training, we minimize

↽̃n≃↼↘ ↼ω(X
(n), y, n)≃2. (175)

28

unconditional

x
②X*-> XC (W/Et

③ So(X ,H
① 118(X*H - E+ 11 ↓↳ 20 (X**,H

6 Discrete Di!usion Models

6.1 Discrete-Time Discrete Di!usion

We aim to define a di!usion generative model in a discrete state space. To
this end, it is necessary to introduce noise into the input data such that,
as time t ⇒ ⇑ the process converges to a common noised distribution
that is independent of the input. However, unlike in the continuous setting,
discrete data does not admit arithmetic operations such as addition, making
it impossible to inject noise in the same manner as in continuous di!usion
models.

Thus, in the case of discrete data, we consider probabilistic transitions
between data points as the noising process.

Let the state space be X = {1, 2, . . . ,K} and let Xt denote the data at
time t = 0, 1, 2, Let pt be the corresponding probability mass vector,
i.e.,

pt =





Pr(Xt = 1)
Pr(Xt = 2)

...
Pr(Xt = K)




↔ [0, 1]K

Defining transition probabilities means specifying all Pr(Xt+1 = y | Xt =
x). We may regard Pr(Xt+1 = y | Xt = x) as the (y, x)-entry of some matrix
Qt, in which case we can express the update of the probability vector as:

pt+1 = Qtpt, t = 0, 1, 2, . . .

For this reason, we refer to Qt as the transition matrix.
For this process to serve as a valid di!usion noising process, each pt must

remain a valid probability mass vector, and the sequence pt should converge
to a stationary distribution. That is,

∋ ω s.t. △p0, pT = QT · · ·Q2Q1p0 ⇒ ω as T ⇒ ⇑

Two of the most common choices for the transition matrix Qt are the
uniform and absorbing (masking) types. In both cases, we typically assume
a time-homogeneous setting where Qt = Q for all t.

29

conditional

Ty,Y
②xi) -> X't) (w/dt)

③ SoCXf ,Yit) ① 1180(X+Xit) - ExP↓& so (X+Yit)

Uniform Transition

Quniform =





1↘ ↼ ς
K→1

· · · ς
K→1

ς
K→1

1↘ ↼ · · · ς
K→1

...
...

. . .
...

ς
K→1

ς
K→1

· · · 1↘ ↼





That is, the transition probabilities are given by:

Pr(Xt+1 = y | Xt = x) =

{
1↘ ↼ if y = x

ς
K→1

if y ▽= x

Absorbing (Masking) Transition

Qabsorb =





1↘ ↼ 0 · · · 0 0
0 1↘ ↼ · · · 0 0
...

...
. . .

...
...

0 0 · · · 1↘ ↼ 0
↼ ↼ · · · ↼ 1





Accordingly, the transition probabilities are defined as:

Pr(Xt+1 = y | Xt = x) =






1↘ ↼ if y = x ▽= [M]

↼ if x ▽= y = [M]

1 if x = y = [M]

0 otherwise

Here, [M] denotes a special mask token, which functions as an absorbing
state such that once a token is masked, it remains masked in all future
timesteps. As a result, the size of Qabsorb is (K + 1) ̸ (K + 1), reflecting
the inclusion of the mask token.

6.2 Score Entropy Discrete Di!usion Model

As in Gaussian di!usion, where the discrete-time forward process can be
extended to a continuous-time stochastic di!erential equation (SDE), the
discrete di!usion forward process discussed in the last subsection can simi-
larly be extended to a continuous-time formulation. This yields the following
ordinary di!erential equation (ODE):

dpt
dt

= Qtpt, p0 = pdata

30

To ensure that this defines a valid noising process, certain restrictions
must be imposed. Also, closed-form expressions of Qt that generalize the
uniform and absorbing di!usion processes are known (we omit the details
here).

The reverse process corresponding to the above forward process can be
analytically described by:

dpT→t

dt
= QT→tpT→t, where





Qt(y, x) =

pt(y)

pt(x)
Qt(x, y) if x ▽= y

Qt(x, x) = ↘


y ⇒=xQt(y, x)

The entries of the reverse transition rate matrix Qt can be interpreted
as follows. For the case y ▽= x, the reverse transition probability is derived
from Bayes’ rule:

pt→!t|t(y|x) = pt|t→!t(x|y)
pt→!t(y)

pt(x)

By dividing both sides by ”t and taking the limit as ”t ⇒ 0, we obtain

the expression Qt(y, x) =
pt(y)

pt(x)
Qt(x, y). The diagonal element Qt(x, x) =

↘


y ⇒=xQt(y, x) ensures mass conservation of pt, i.e., it ensures
K

i=1
pt(i) =

1 at all times.
In continuous di!usion, sampling is performed by estimating the score

function ↖xt logPXt(xt). Analogously, in discrete di!usion, modeling the

reverse process requires estimating the marginal ratio pt(y)
pt(x)

, which serves as

the discrete counterpart of the score function and is denoted by s(x, t)y.
Explicitly, the score function is given by:

s(x, t) =





pt(1)
pt(x)
pt(2)
pt(x)
...

pt(K)

pt(x)




↔ [0,⇑)K

The score function s(x, t) is then approximated by a neural network sω(x, t).
One early attempt to learn this score function was the method of Con-

crete Score Matching [9]. Analogous to the ▷2 loss used in continuous di!u-
sion,

≃sω(xt, t)↘↖xt logPXt(xt)≃2,

31

NN to estimate

A

lea
this

concrete score matching minimizes the following objective:



y ⇒=x

(
sω(xt, t)y ↘

pt(y)

pt(x)

)
2

.

However, this squared error loss does not penalize negative values of sω(xt, t)y,
which can hinder learning performance.

A successful objective for learning the ratio pt(y)
pt(x)

is the Score Entropy

Loss, first introduced in [8], awarded Best Paper at ICML 2024:

LSM(φ) = Ext↓pt






y ⇒=xt

wxt,y

(
sω(xt, t)y ↘

pt(y)

pt(x)
log sω(xt, t)y + C

(
pt(y)

pt(x)

))



Here, wxt,y are arbitrary nonnegative weights, and C(a) = a(log a ↘ 1). It
can be shown that if wxt,y > 0 for all xt and y, the minimizer φ↼ of this loss

satisfies sωε(xt, t)y = pt(y)
pt(x)

. Moreover, we can see that the term log sω(xt, t)y
prevents any nonpositive estimates of the score function.

Nevertheless, since the ratio pt(y)
pt(x)

is unknown, the score entropy loss
is intractable in practice. An alternative yet equivalent formulation is the
following Implicit Score Entropy Loss:

LISE(φ) = Ext↓pt






y ⇒=xt

wxt,ysω(xt, t)y ↘ wy,xt log sω(y, t)xt





However, Monte Carlo estimation of this loss requires sampling an xt and
evaluating sω(y, t)xt for all y ▽= xt, which becomes intractable in high-
dimensional settings. A commonly used approximation is to sample y uni-
formly, but this increases the variance of the estimator and may hinder
training stability. This issue parallels challenges encountered in continuous
di!usion, which have been addressed through sliced score matching. Mo-
tivated by this, we introduce an equivalent but tractable objective: the
Denoising Score Entropy Loss: LDSE(φ) is defined to be

Ex0↓p0, xt↓pt|0(·|x0)






y ⇒=xt

wxt,y

(
sω(xt, t)y ↘

pt|0(y|x0)
pt|0(xt|x0)

log sω(xt, t)y

)



This loss is tractable and provably equivalent to the original score en-
tropy loss, enabling e!ective approximation of sω to the true marginal ratio.

Using the learned score function, one can define a parametrized reverse
process and employ it for reverse-time sampling.

32

WantO

don't care

-

11
E

Goal:
find G

mpapara m2 - So(XI)y
: PEx

minimized

need to sample X+, SoCX

Tant -"J so,
A
:Ethcome

a

infeasible if K77

&replacer w/ conditional. Similar to continuous case

11 So (X+ it) - vlogp+(x+)/1

=>11St(X+,H)- FlogPHolit

6.3 Practical Sequence Space

In practice, the state space we consider typically takes the form of a sequence
space:

X = {1, 2, . . . ,K}L,

where 1, 2, . . . ,K represent vocabulary tokens and L denotes the sequence
length. We denote a sequence by a boldface vector xt, and each token at
position i by xit, so that xt = x1tx

2
t · · ·xLt .

A key computational challenge in this setting is that the transition rate
matrix Qt for the forward ODE has exponential size, namely KL ̸ KL,
leading to intractability. This issue can be mitigated by assuming that each
token is perturbed independently according to an identical transition rate
matrix of the form Qtok

t = ϑ(t)Qtok. Under this assumption, simulation of
the forward process becomes significantly more tractable.

Moreover, this assumption implies the following sparsity condition:

Qt(y,x) = 0 if dH(y,x) ∞ 2,

where dH denotes the Hamming distance (i.e., the number of di!ering tokens
between two sequences). This follows from the fact that, under the ODE
framework, the probability of more than one token changing simultaneously
in an infinitesimal time interval is negligible compared to the probability of
a single-token change.

Turning to the reverse process, the reverse transition rate is given by:

Qt(y,x) =
pt(y)

pt(x)
Qt(x,y) if x ▽= y.

To approximate Qt(y,x), we substitute the unknown marginal ratio pt(y)
pt(x)

with the learned score function sω(x, t)y. However, since Qt(x,y) = 0 when-

ever dH(x,y) ∞ 2, it follows that Q
ω
t (y,x) = 0 as well, and thus the corre-

sponding sω(x, t)y’s are not required for modeling the reverse process.
Consequently, it is su$cient to train the score network only for sequence

pairs (x, x̂) such that dH(x, x̂) = 1.

References

[1] Brian DO Anderson. Reverse-time di!usion equation models. Stochastic Pro-
cesses and their Applications, 12(3):313–326, 1982.

33

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[3] Prafulla Dhariwal and Alexander Nichol. Di!usion models beat gans on image
synthesis. Advances in neural information processing systems, 34:8780–8794,
2021.

[4] Bradley Efron. Tweedie’s formula and selection bias. Journal of the American
Statistical Association, 106(496):1602–1614, 2011.

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising di!usion probabilistic
models. Advances in neural information processing systems, 33:6840–6851,
2020.

[6] Jonathan Ho and Tim Salimans. Classifier-free di!usion guidance. arXiv
preprint arXiv:2207.12598, 2022.

[7] Alex Krizhevsky, Geo!rey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[8] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete di!usion modeling
by estimating the ratios of the data distribution. In ICML, 2024.

[9] Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score
matching: Generalized score matching for discrete data. In NeurIPS, 2022.

[10] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising di!usion implicit
models. arXiv preprint arXiv:2010.02502, 2020.

[11] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Ste-
fano Ermon, and Ben Poole. Score-based generative modeling through stochas-
tic di!erential equations. In International Conference on Learning Represen-
tations, 2021.

[12] Pascal Vincent. A connection between score matching and denoising autoen-
coders. Neural computation, 23(7):1661–1674, 2011.

34

residual connection

XI ->Ent ... -> FlogP(XH So(XtiYit)

↓ let
downumplingunit ↑

It
d. s . t U. S.

-At

